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Anisotropic nonperturbative zero modes for passively advected magnetic fields
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An analytic assessment of the role of anisotropic corrections to the isotropic anomalous scaling exponents is
given for thed-dimensional kinematic magnetohydrodynamics problem in the presence of a mean magnetic
field. The velocity advecting the magnetic field changes very rapidly in time and scales with a positive
exponenté. Inertial-range anisotropic contributions to the scaling exponeftsof second-order magnetic
correlations are associated with zero modes and have been calculated nonperturbativebty 3Fthe limit
&0 yields{;=j—2+&(2j3+]?~5j—4)/[2(4j>—1)], wherej (j=2) is the order in the Legendre polyno-
mial decomposition applied to correlation functions. Conjectures on the fact that anisotropic components
cannot change the isotropic threshold to the dynamo effect are also [Bd@63-651X99)51109-4

PACS numbeps): 47.27.Te

Since Kolmogoro\ 1] formulated his hypothesis, most of lation data of anisotropic turbulence have been analyzed.
the theories and models in turbulence have used as a kd&yonsidering the kinematic MHD problem, the issue of the
ingredient the restored local isotropy of small-scale structhreshold for the appearance on the unbounded growth of the
tures, even in the presence of large-scale anisotropy. Dealirgagnetic field is also present. We shall report a conjecture
with such an idealized picture implies that the anisotropicaccording to which we can argue that the anisotropic com-
effects, that almost every large-scale forcing indeed involveponents do not play any effect in this sense.
are totally disregarded. In the presence of a mean compon&ft (actually sup-

Recently, some considerable effort has been njadé] posed varying on very large scaled., the largest one in our
to shed some light on the statistics of structure functiongroblem the kinematic MHD equations describing the evo-
when taking anisotropy explicitly into account. When doing lution of the fluctuating part3, of the magnetic field arg7]
this, two major questions emerge: the first concerns the pos-

sibility of an universalnature of the scaling exponents of the 4B,+Vv-dB,=B-dv,+B° dv, +«ki’B,,
separated isotropic and anisotropic contributions to structure (1)
functions; the second concerns the decay of anisotropic fluc- a=1 .. .d

tuations, and consequently the validity of the local isotropy
hypothesis. The state of the art on this subject, especiall
when looking at experimental data, does not give uniqu
answers.

Here, our aim is to analyze, through nonperturbative cal
culations, the effects of anisotropy on anomal@us., non-
dimensiongl scaling exponents of the magnetic field corre-
lations, within a kinematic magnetohydrodynami®$HD)
problem (i.e., when reaction of the magnetic field on the
velocity field is neglected Since the advecting velocity field
that we consider is5-correlated in time, an analytical ap-
proach is possible: the main result shown in this Rapid Com- 0 )
munication is that the anomalous scaling exponégtasso- (Va(rhvg(r' )= S(t—t")[dap—Sap(r—r)], (2
ciated with the isotropic contribution, is dominant with
respect to the anisotropic ong$, In addition, the entire set whereS, 4(r) is fixed by isotropy and scaling behavior, and
of anisotropic scaling exponents,, is given, showing the scales with the exponet in the range 6<£<2:
existence of a hierarchy related to the degree of anisotropy
such thatly<{,<---. This result is the signature of the rr
emergence of local isotropy at small scales. Such hierarchy Saﬁ(r):Drg (d+&-1)6,5—& aZ’B : 3
relations are analogous to those found in R2f, where the r
scalar advection in the presence of large-scale anisotropy is
studied exploiting the field theoretic renormalization groupThe &-correlation in time ofv permits to exploit the Gauss-
(RG). ian integration by partsa comprehensive description of this

We also remark that the scenario outlined here is compatechnique can be found, e.g., in RE8]) to obtain closed,
ible with those arising from the results shown in Ré¢f&6]  exact equations folC,4(r,t)=(B,(X,t)Bg(x+r,t)). After
where, respectively, experimental and direct numerical simusome manipulations of Eql), such equations read

here the velocityy, is a zero-mean Gaussian random pro-
cess, homogeneous, isotropic and white-in-timejs the
magnetic diffusivity, andd is the dimension of the space.
Bothv andB are divergence-free fields. The teBfi- dv, in
Eq. (1) plays the same role as an external forcing driving the
system and being also a source of anisotropy for the mag-
netic field statistics.

The velocity is self-similar with the two-point correlation
function,
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gebra, the following four equation&orresponding to the

hCop=Sj0i9;Cop—(9;Sip)diCyqj u spo
projections over ,r5/r?, 8,4, Bor s/t andBgBY):

+(819;S,5)(Cij+BIBY) +2kd°C 5. (4)

—(9;S4i)(9iCjp)

2.2 2\ 42
. . air<dr+byird, +c(1—2z%095+dyzd, + e | F;
A further equation forC,, ; follows from the solenoidal con- (811707 +bar dr+Cal )0z + 120, €117,
dition on B, +[f1r 0, +9129,+ j11Fo+[Kezrd, +1,2%0,+ myz

9,Cap=0. 6) +N13,]Fa+[ 01+ p12°] Fs= (41 +1,2%) B, (1)

(F:or what follows, it is worth emphasizing two properties of g, 7, +[b,r252+c,r g, + do(1—22) 2+ €,20,+ f 1 F,
ap -

+g,2F3+[Ko+1,22] Fs= (My+n,z%) B2, 12
(i) because of homogeneit{,; is left invariant under 92275t ke 12271 5= (Mpt n227) 12

the following set of transformations:
a3, (6)

(i) Cop(r)=C,p(—r), as it follows from Eq(4) after the
substitutionr— —r.

g0, F1+ 030, F,+[Car 202+ dgr o, + e5(1— 22) 92

r——r and

+f320,+ 93] Fa+[jazrd, + (Kg+132%)9,+ myz] Fs
=n3B%%z, (13
40, F 3+ [Dar202+Car 9, +dg(1—2%) 92+ €420, + £ 4] Fs

(14

As shown in Ref[9], in the isotropic casé.e.,B°=0in our
problem) anomalies appear already in the scaling exponents
of the second-order magnetic correlatios,;, and have
been calculated nonperturbatively by the author. Anomalousvhere the coefficients; ,b;, ... r; are cumbersome func-
scaling laws are associated with zero modes of the closetibns of ¢ andd and will not be here reported for the sake of
equations satisfied by the equal-time correlation functions. Ifbrevity. Without loss of generality, we have fix&l=1 in
Ref.[10], anomalous exponents for higher-order correlations€Eg. (3), and we have neglected all terms involving the mag-
have been calculated to the ordérby exploiting the RG  netic diffusivity x, our attention being indeed focused in the
technique. inertial range of scales, i.ep<r<L, where 5=« is the
The extraction of anisotropic contributions to the isotropicdissipative scale for the problem.
scaling ofC ,4(r) found in Ref.[9], and the investigation of With the substitution of expressio(¥), the solenoidal
their effect(if any) on the emergence of the dynamo effect condition (5) splits into the following couple of equations:
are the main questions addressed in the present paper. The
main technical difference with respect to REF] is that the [ dr+(d—1)]F+[rd —239,) Fp+ (210, +d,~ 2°0,~ 2] F3
angular structure of zero modes has now to be explicitly -0 (15)
taken into account. '
In the presence of anisotropy, the most general expression
for the two-point magnetic correlation§,,4(r), in the sta-

t!onary state _mvolves fivétwo in the isotropic casZeofunc- associated to the projections ovey/r andég respectively.
tions depending on both=|x—x'| and z=cos¢=B°-r/r, From relation(10) and Eqs(15) and(16) it then follows
where B° is the unit vector corresponding to the direction that only two functions, thé"s, in Eq.(7), are independent.
selected by the mean magnetic field. We remark that the According to the old idea of Kolmogorov, in cascadelike
space is anisotropic but still homogeneous, so there is nmechanisms of transfer of energy towards small scales, an-
explicit dependence on the pointsx’, but only on their isotropy present at the integral scale should eventually decay

294802,

3, F,+[ro, +d]Fa+[zrd, +(1—2%)3,] Fs=0 (16)

distance. Namely,

"o

Coup(r)=F1(r,2) 6,5+ Fo(r, z) +]—'3(r Z)

Bal o A A
+ Fu(r,2) ; + Fs(r,2)BoBg. (7)

From the propertiesi) and (ii) of C,z(r) one immediately
obtains the following relations for th&’s:

Fi(r,2)=F(r,—z), i=125, (8)
fg(r,Z):_fg(r,_Z), (9)
F3(r,z)=Fu(r,z). (10

Substituting the expressiof¥) into Eq. (4) and using the

during the(chaotig transfer. One could thus argue that, at
least at small scales, anisotropic corrections to the isotropic
contribution would be smaller and smaller as the order of
anisotropic contributions increases. For Navier-Stokes turbu-
lence in channel flow, such a picture has recently been con-
firmed by Aradet al. [6].

As we shall see, the above physical hint can be easily
exploited if one decomposes functiotfson the Legendre
polynomial basis. Accordingly, we have

©

Fi(r,z)= 2

,(r)P2| i=1,2,5, (17

©

f3<r,z>=|§0 &) (NP 1(2), (18)

where the separation of even and odd orders in Bg8.and

chain rules, we obtain, after lengthy but straightforward al-(18) arises as a consequence of the symmetries expressed by
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relations(8) and(9), respectively. As largdr's correspond to  as in Ref[9]. The structure of the above equations fixes the
higher order anisotropic contributions, we thus expect thatrelation between the scaling exponents relative to different
when scaling behavior sets ine., for n<<r<L), we shall  f’s. Indeed, when searching for power law solut|ch§§(r)

(i)
have «r¢’, in order to obtain balanced equations the “oblique”
relations must hold

=(W=@= 3 =5,
We would like to obtain equations foi{’(r), to then be GEOTGTEORTOE @)
solved for thez{"). To do this, in Eqs(11)—(16) we have to  We are now ready to show that nontrivial scaling behaviors
express quantities such 299" (j,m=0,1,2, withj#1 and for the f’s take place due to zero modes, i.e., the solutions of
m=2) in terms of Legendre polynomials. Recalling to this the homogeneous problem associated with Eg%)—(26).
purpose well-known relations involving these lattesee, To that purpose, let us consider such differential problem
e.g., Ref[11]), we obtain general expressions, as e.g., with no forcing(i.e.,B°=0). If, when looking for power law
solutions, we exploit Eq(27) and the fact that only two
i functions of thef’s are independent, our differential problem
9 7i(r,2) ZZ (2)] (2l +1)2 f(23+'+1 Nl (20 is mapped into an algebraic one. In the latter the emergence
of zero modes reduces to imposing the existence of nonzero
from which we notice that an arbitraryorder anisotropic  solutions of a 22 homogeneous linear system. The calcu-
contribution is coupled to all larger orders. The resultinglation is lengthy but straightforward, and the following ex-
equations arising from Eq$11)—(16) are thus not closed.  pressions for the zero-mode exponents are obtdib2f
Closed equations for thEs can actually be obtained by
exploiting Eq.(19), i.e. by using the hypothesis of a hierar- £ 2 3 2.2 3
chy in the self-similar behavior of th&'s. Accordingly, in G=- 2(d—1){2§+OI —d-[-2d%—2d°¢"~6d
Egs.(11)-(16) at a given ordej, for each functionf(" we
need to retain only its lower order contributions, withj. It

{0nerd”, with (P<d<-.. (19

©

+4£2d+8+10d£+20dj— 20d—8£—8j + 4d?j?

is worth noticing that we can control the validity of this +282— 4¢£]2+17d2— 8d 2+ 8¢j + 4d3] + 4d?j £

(physica) assumption in a self-consistent way, at the end of

our calculation. +4dj?¢+4)2—16d%) — 12d£j +d* = 2K (d— 1)
As a result, one obtains the followin@nfinite) set of N

closed differential equations, valid fpreven: x(2=§1"3, (28)

anr 2t byrf [ Wy f W dyrf /@ ef Pagprf € where

+jaf D+ ke (,=B2, 5,5, (21)  K=(d—1)(d®+4d? —5d%+2d%¢+ ¢£2d+4déj —6d ¢+ 8d
_ H i2_ g2 - AN Ni2 P2
azfj(l)+b2r2f ;’(2)+czrf ,—'(2)+d2f,(2)+ezf ,@ﬁng 1(5—)2 12dj+4dj"— £+ 46+ 8] —8E) —4—4)°+4€)9).
= 5021'251.2, (22) Some remarks are in order. Firgg coincides with the iso-

tropic solution obtained by Vergassola in Rf], the admis-
agf M+ baf P+ cor?f 1D+ darf [+ e5f ¥+ garf [ € sibility of which has been proved by the author. Secafid,
diverges as ~! at the dissipative scalg. The exponent,
is thus not admissible. Third;”>¢; for all j. This means
that, in the inertial range of scaléise.,r/L<1) the leading
zero-mode solutions foj>2 are associated witl; . We

+j3f (5,=B%, 8),, (23)

agf ¥ +b,r2f 7+ corf /5 +d,f (9),=B%, 55,

(24) can thus define the leading set of zero modesas ¢,
i ={5; {i=¢; for j=2. In particular, for j=2, the
rf '(l)+(d 1)f] (D rf '(2) if (2)+21 rf '(3) asymptotic limitsé<1 andd>1 are, respectively,
P2
L e - 28 oy o2 3
2J._lfl-,l—o, (25 52—(d_1)(d+2)+0(§), §2—d2+0(1/d ). (29
(2j—D)fF P+rf [ +df 3 +r i-1 £1(5) Let us briefly discuss the infrargtR) behavior of; . In the
1-177 2j—3 72 absence of forcing terms, there is no way to satisfy the IR
_ _ boundary conditiorji.e., C,g(r)=0 for r—c]: zero mode
(-20-1) £6) _g (26) associated with;; indeed diverges for—w. As a conse-

2j—3 =2 guence, zero modes fpe=2 are not globally acceptable. For
j=2 the situation changes completely: in this case, Egs.
where coefficientsy,b;, - - - [different from those defined in  (21)—(24) are forced and, as in R4P], IR boundary condi-
Egs.(1)—(14)] depend only or¢ andd. Forj=0, the coef-  tions can be satisfied by matching at the large statero-
ficients relative tof (¥, andf (¥, (and their derivativsare  mode solutions with those of the inhomogeneous problem,

zero and the resultlng equat|ons fi) andf {*) are exactly From the above considerations, it also follows that zero
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6 T T T T effect) arises for £>1. The question addressed here is

=6 whether anisotropic component can contribute to destabilize
the system, shifting toward smaller valueséothe threshold
. | for the dynamo. We note that, in the isotropic case, dynamo
arises when the exponent related to the admissible zero mode
j=4 becomes complex. In this case, zero-mode solutions have
//"" sinusoidal components, a fact that makes possible their
s 2 - matching with the appropriate boundary conditions also in
the absence of forcing.e., the system is self-maintained
) This happens fo>1, £=1 being the threshold. Taking
= such condition as a criterion to select the emergence of an
0 T unbounded growth, we can conclude that there is no effect
j=0 played by the anisotropic components. Indeed, it is easily
verified from Eq.(28) that, for all d's, ¢; is real for &
2 - - . . e[0,1].
0 0.2 0.4 06 0.8 1 In conclusion, we have presented a system where the ex-
E., traction of anisotropic contributions to the anomalous scaling
of the equal-time magnetic correlation functions can be per-
formed in a nonperturbative way. We have calculated the
entire set of universal anomalous exponeiits,and we have
given an analytic assessment of the dominance of the funda-
mental exponent associated with the isotropic shell. More
generally, the hierarchy{o<{,<---{;<--- has been
proved. The picture here drawn is in agreement with recent
findings by Antono\ 2], where the passive scalar problem is
studied, and by Aradt al.[6] for Navier—Stokes turbulence.

FIG. 1. Behavior of; vs ¢ for d=3 and(from below to above
j=0,j=2, 4, and 6.

modes associated witfy become acceptable for all ordgrs
when a fully anisotropic forcing terrfi.e., projecting on all
Legendre polynomia)ss added in the right-hand side of Eq.
(2).

Finally, autoconsistency of our solution fgy, that is, the
validity of the hierarchy in Eq(19), can be immediately
checked from Fig. 1, where the behaviors of a féwas
functions of ¢ are shown in the three-dimensional case for It is a pleasure to thank A. Gruzinov and M. Vergassola
j=0, 2, 4, and 6from below to abovg It is easy to verify  for their stimulating suggestions on the subject matter. Use-
that the increasing of scaling exponents witctually holds  ful suggestions from N. Antonov, L. Biferale, A. Celani, R.
for all values ofj andd. Festa, and J.-L. Gilson are also acknowledged. A.M. grate-

The expression fof; allows us to make some conjectures fully acknowledges the EU for the research Contract No.
on the role played by anisotropic effects on the emergence dFfMRX-CT-98-0175 which partially supported the present
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