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Anisotropic nonperturbative zero modes for passively advected magnetic fields
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An analytic assessment of the role of anisotropic corrections to the isotropic anomalous scaling exponents is
given for thed-dimensional kinematic magnetohydrodynamics problem in the presence of a mean magnetic
field. The velocity advecting the magnetic field changes very rapidly in time and scales with a positive
exponentj. Inertial-range anisotropic contributions to the scaling exponents,z j , of second-order magnetic
correlations are associated with zero modes and have been calculated nonperturbatively. Ford53, the limit
j°0 yieldsz j5 j 221j(2 j 31 j 225 j 24)/@2(4j 221)#, wherej ( j >2) is the order in the Legendre polyno-
mial decomposition applied to correlation functions. Conjectures on the fact that anisotropic components
cannot change the isotropic threshold to the dynamo effect are also made.@S1063-651X~99!51109-4#

PACS number~s!: 47.27.Te
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Since Kolmogorov@1# formulated his hypothesis, most o
the theories and models in turbulence have used as a
ingredient the restored local isotropy of small-scale str
tures, even in the presence of large-scale anisotropy. Dea
with such an idealized picture implies that the anisotro
effects, that almost every large-scale forcing indeed invo
are totally disregarded.

Recently, some considerable effort has been made@2–6#
to shed some light on the statistics of structure functio
when taking anisotropy explicitly into account. When doi
this, two major questions emerge: the first concerns the p
sibility of an universalnature of the scaling exponents of th
separated isotropic and anisotropic contributions to struc
functions; the second concerns the decay of anisotropic fl
tuations, and consequently the validity of the local isotro
hypothesis. The state of the art on this subject, espec
when looking at experimental data, does not give uniq
answers.

Here, our aim is to analyze, through nonperturbative c
culations, the effects of anisotropy on anomalous~i.e., non-
dimensional! scaling exponents of the magnetic field corr
lations, within a kinematic magnetohydrodynamics~MHD!
problem ~i.e., when reaction of the magnetic field on th
velocity field is neglected!. Since the advecting velocity field
that we consider isd-correlated in time, an analytical ap
proach is possible: the main result shown in this Rapid Co
munication is that the anomalous scaling exponent,z0, asso-
ciated with the isotropic contribution, is dominant wi
respect to the anisotropic ones,z j . In addition, the entire se
of anisotropic scaling exponents,z j , is given, showing the
existence of a hierarchy related to the degree of anisotropj,
such thatz0,z2,•••. This result is the signature of th
emergence of local isotropy at small scales. Such hierar
relations are analogous to those found in Ref.@2#, where the
scalar advection in the presence of large-scale anisotrop
studied exploiting the field theoretic renormalization gro
~RG!.

We also remark that the scenario outlined here is com
ible with those arising from the results shown in Refs.@4,6#
where, respectively, experimental and direct numerical sim
PRE 601063-651X/99/60~4!/3483~4!/$15.00
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lation data of anisotropic turbulence have been analyz
Considering the kinematic MHD problem, the issue of t
threshold for the appearance on the unbounded growth o
magnetic field is also present. We shall report a conject
according to which we can argue that the anisotropic co
ponents do not play any effect in this sense.

In the presence of a mean componentBo ~actually sup-
posed varying on very large scales;L, the largest one in our
problem! the kinematic MHD equations describing the ev
lution of the fluctuating part,B, of the magnetic field are@7#

] tBa1v•Ba5B•va1Bo
•va1k]2Ba ,

~1!

a51, . . . ,d,

where the velocity,v, is a zero-mean Gaussian random pr
cess, homogeneous, isotropic and white-in-time,k is the
magnetic diffusivity, andd is the dimension of the space
Both v andB are divergence-free fields. The termBo

•va in
Eq. ~1! plays the same role as an external forcing driving
system and being also a source of anisotropy for the m
netic field statistics.

The velocity is self-similar with the two-point correlatio
function,

^va~r,t !vb~r8,t8!&5d~ t2t8!@dab
0 2Sab~r2r8!#, ~2!

whereSab(r) is fixed by isotropy and scaling behavior, an
scales with the exponentj, in the range 0,j,2:

Sab~r!5Dr jF ~d1j21!dab2j
r ar b

r 2 G . ~3!

The d-correlation in time ofv permits to exploit the Gauss
ian integration by parts~a comprehensive description of th
technique can be found, e.g., in Ref.@8#! to obtain closed,
exact equations forCab(r,t)[^Ba(x,t)Bb(x1r,t)&. After
some manipulations of Eq.~1!, such equations read
R3483 © 1999 The American Physical Society
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] tCab5Si j ] i] jCab2~] jSib!] iCa j2~] jSa i !~] iCj b!

1~] i] jSab!~Ci j 1Bi
oBj

o!12k]2Cab . ~4!

A further equation forCab follows from the solenoidal con
dition on B,

]aCab50. ~5!

For what follows, it is worth emphasizing two properties
Cab :

~i! because of homogeneity,Cab is left invariant under
the following set of transformations:

r°2r and a↔b; ~6!

~ii ! Cab(r)5Cab(2r), as it follows from Eq.~4! after the
substitutionr°2r.

As shown in Ref.@9#, in the isotropic case~i.e., Bo50 in our
problem! anomalies appear already in the scaling expone
of the second-order magnetic correlations,Cab , and have
been calculated nonperturbatively by the author. Anomal
scaling laws are associated with zero modes of the clo
equations satisfied by the equal-time correlation functions
Ref. @10#, anomalous exponents for higher-order correlatio
have been calculated to the orderj by exploiting the RG
technique.

The extraction of anisotropic contributions to the isotrop
scaling ofCab(r) found in Ref.@9#, and the investigation o
their effect~if any! on the emergence of the dynamo effe
are the main questions addressed in the present paper
main technical difference with respect to Ref.@9# is that the
angular structure of zero modes has now to be explic
taken into account.

In the presence of anisotropy, the most general expres
for the two-point magnetic correlations,Cab(r), in the sta-
tionary state involves five~two in the isotropic case! func-
tions depending on bothr[ux2x8u and z[cosu5B̂o

•r/r ,
where B̂o is the unit vector corresponding to the directio
selected by the mean magnetic field. We remark that
space is anisotropic but still homogeneous, so there is
explicit dependence on the pointsx,x8, but only on their
distance. Namely,

Cab~r!5F1~r ,z!dab1F2~r ,z!
r ar b

r 2
1F3~r ,z!

B̂a
or b

r

1F4~r ,z!
B̂b

or a

r
1F5~r ,z!B̂a

oB̂b
o . ~7!

From the properties~i! and ~ii ! of Cab(r) one immediately
obtains the following relations for theF ’s:

Fi~r ,z!5Fi~r ,2z!, i 51,2,5, ~8!

F3~r ,z!52F3~r ,2z!, ~9!

F3~r ,z!5F4~r ,z!. ~10!

Substituting the expression~7! into Eq. ~4! and using the
chain rules, we obtain, after lengthy but straightforward
ts
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gebra, the following four equations~corresponding to the
projections overr ar b /r 2, dab, B̂a

or b /r and B̂a
oB̂b

o):

@a1r 2] r
21b1r ] r1c1~12z2!]z

21d1z]z1e1#F1

1@ f 1r ] r1g1z]z1 j 1#F21@k1zr] r1 l 1z2]z1m1z

1n1]z#F31@o11p1z2#F55~q11r 1z2!Bo2, ~11!

a2F11@b2r 2] r
21c2r ] r1d2~12z2!]z

21e2z]z1 f 2#F2

1g2zF31@k21 l 2z2#F55~m21n2z2!Bo2, ~12!

a3]zF11b3]zF21@c3r 2] r
21d3r ] r1e3~12z2!]z

2

1 f 3z]z1g3#F31@ j 3zr] r1~k31 l 3z2!]z1m3z#F5

5n3Bo2z, ~13!

a4]zF31@b4r 2] r
21c4r ] r1d4~12z2!]z

21e4z]z1 f 4#F5

5g4Bo2, ~14!

where the coefficientsai ,bi , . . . ,r i are cumbersome func
tions ofj andd and will not be here reported for the sake
brevity. Without loss of generality, we have fixedD51 in
Eq. ~3!, and we have neglected all terms involving the ma
netic diffusivity k, our attention being indeed focused in th
inertial range of scales, i.e.,h!r !L, whereh5k1/j is the
dissipative scale for the problem.

With the substitution of expression~7!, the solenoidal
condition ~5! splits into the following couple of equations:

@r ] r1~d21!#F11@r ] r2z]z#F21@zr] r1]z2z2]z2z#F3

50, ~15!

]zF21@r ] r1d#F31@zr] r1~12z2!]z#F550 ~16!

associated to the projections overr b /r andB̂b
o , respectively.

From relation~10! and Eqs.~15! and ~16! it then follows
that only two functions, theF’s, in Eq. ~7!, are independent

According to the old idea of Kolmogorov, in cascadelik
mechanisms of transfer of energy towards small scales,
isotropy present at the integral scale should eventually de
during the~chaotic! transfer. One could thus argue that,
least at small scales, anisotropic corrections to the isotro
contribution would be smaller and smaller as the order
anisotropic contributions increases. For Navier-Stokes tur
lence in channel flow, such a picture has recently been c
firmed by Aradet al. @6#.

As we shall see, the above physical hint can be ea
exploited if one decomposes functionsF on the Legendre
polynomial basis. Accordingly, we have

Fi~r ,z!5(
l 50

`

f 2l
( i )~r !P2l~z!, i 51,2,5, ~17!

F3~r ,z!5(
l 50

`

f 2l 11
(3) ~r !P2l 11~z!, ~18!

where the separation of even and odd orders in Eqs.~17! and
~18! arises as a consequence of the symmetries expresse
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relations~8! and~9!, respectively. As largerl ’s correspond to
higher order anisotropic contributions, we thus expect th
when scaling behavior sets in~i.e., for h!r !L), we shall
have

f l
( i )~r !}r z l

( i )
, with z0

( i ),z1
( i ),•••. ~19!

We would like to obtain equations forf l
( i )(r ), to then be

solved for thez l
( i ) . To do this, in Eqs.~11!–~16! we have to

express quantities such aszj]z
m ( j ,m50,1,2, with j Þ1 and

mÞ2) in terms of Legendre polynomials. Recalling to th
purpose well-known relations involving these latter~see,
e.g., Ref.@11#!, we obtain general expressions, as e.g.,

]zFi~r ,z!5(
l 50

`

Pl~z!F ~2l 11! (
q50

`

f 2q1 l 11
( i ) ~r !G , ~20!

from which we notice that an arbitraryl-order anisotropic
contribution is coupled to all larger orders. The resulti
equations arising from Eqs.~11!–~16! are thus not closed.

Closed equations for thef ’s can actually be obtained b
exploiting Eq.~19!, i.e. by using the hypothesis of a hiera
chy in the self-similar behavior of thef ’s. Accordingly, in
Eqs. ~11!–~16! at a given orderj, for each functionf l

( i ) we
need to retain only its lower order contributions, withl< j . It
is worth noticing that we can control the validity of th
~physical! assumption in a self-consistent way, at the end
our calculation.

As a result, one obtains the following~infinite! set of
closed differential equations, valid forj even:

a1r 2f j9
(1)1b1r f j8

(1)1c1f j
(1)1d1r f j8

(2)1e1f j
(2)1g1r f j 218(3)

1 j 1f j 21
(3) 1k1f j 22

(5) 5Bo2l 1d j 2 , ~21!

a2f j
(1)1b2r 2f j9

(2)1c2r f j8
(2)1d2f j

(2)1e2f j 21
(3) 1g2f j 22

(5)

5Bo2 j 2d j 2 , ~22!

a3f j
(1)1b3f j

(2)1c3r 2f j 219(3)1d3r f j 218(3)1e3f j 21
(3) 1g3r f j 228(5)

1 j 3f j 22
(5) 5Bo2k1d j 2 , ~23!

a4f j 21
(3) 1b4r 2f j 229(5)1c4r f j 228(5)1d4f j 22

(5) 5Bo2e4d j 2 ,
~24!

r f j8
(1)1~d21! f j

(1)1r f j8
(2)2 j f j

(2)1
j

2 j 21
r f j 218(3)

2
j 2

2 j 21
f j 21

(3) 50, ~25!

~2 j 21! f j
(2)1r f j 218(3)1d f j 21

(3) 1r
j 21

2 j 23
f j 228(5)

2
~ j 22!~ j 21!

2 j 23
f j 22

(5) 50, ~26!

where coefficientsai ,bi ,••• @different from those defined in
Eqs.~11!–~14!# depend only onj andd. For j 50, the coef-
ficients relative tof j 21

(3) and f j 22
(5) ~and their derivatives! are

zero and the resulting equations forf 0
(1) and f 0

(2) are exactly
t,

f

as in Ref.@9#. The structure of the above equations fixes t
relation between the scaling exponents relative to differ
f ’s. Indeed, when searching for power law solutionsf j

( i )(r )

}r z j
( i )

, in order to obtain balanced equations the ‘‘oblique
relations must hold

z j[z j
(1)5z j

(2)5z j 21
(3) 5z j 22

(5) . ~27!

We are now ready to show that nontrivial scaling behavi
for the f ’s take place due to zero modes, i.e., the solutions
the homogeneous problem associated with Eqs.~21!–~26!.
To that purpose, let us consider such differential probl
with no forcing~i.e.,Bo50). If, when looking for power law
solutions, we exploit Eq.~27! and the fact that only two
functions of thef ’s are independent, our differential proble
is mapped into an algebraic one. In the latter the emerge
of zero modes reduces to imposing the existence of non
solutions of a 232 homogeneous linear system. The calc
lation is lengthy but straightforward, and the following e
pressions for the zero-mode exponents are obtained@12#:

z j
652

1

2~d21!
$2j1d22d2@22d3j22d2j226d3

14j2d18110dj120d j220d28j28 j 14d2 j 2

12j224j j 2117d228d j218j j 14d3 j 14d2 j j

14d j2j14 j 2216d2 j 212dj j 1d462AK~d21!

3~22j!#1/2%, ~28!

where

K5~d21!~d314d2 j 25d212d2j1j2d14dj j 26dj18d

212d j14d j22j214j18 j 28j j 2424 j 214j j 2!.

Some remarks are in order. First,z0
1 coincides with the iso-

tropic solution obtained by Vergassola in Ref.@9#, the admis-
sibility of which has been proved by the author. Second,z0

2

diverges asr 21 at the dissipative scaleh. The exponentz0
2

is thus not admissible. Third,z j
1.z j

2 for all j. This means
that, in the inertial range of scales~i.e., r /L!1) the leading
zero-mode solutions forj .2 are associated withz j

2 . We
can thus define the leading set of zero modesz j as z0

[z0
1 ; z j[z j

2 for j >2. In particular, for j 52, the
asymptotic limitsj!1 andd@1 are, respectively,

z25
2j

~d21!~d12!
1O~j2!; z25

2j

d2
1O~1/d3!. ~29!

Let us briefly discuss the infrared~IR! behavior ofz j . In the
absence of forcing terms, there is no way to satisfy the
boundary condition@i.e., Cab(r)50 for r °`]: zero mode
associated withz j indeed diverges forr °`. As a conse-
quence, zero modes forj >2 are not globally acceptable. Fo
j 52 the situation changes completely: in this case, E
~21!–~24! are forced and, as in Ref.@9#, IR boundary condi-
tions can be satisfied by matching at the large scaleL zero-
mode solutions with those of the inhomogeneous proble
From the above considerations, it also follows that ze
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modes associated withz j become acceptable for all ordersj
when a fully anisotropic forcing term~i.e., projecting on all
Legendre polynomials! is added in the right-hand side of Eq
~1!.

Finally, autoconsistency of our solution forz j , that is, the
validity of the hierarchy in Eq.~19!, can be immediately
checked from Fig. 1, where the behaviors of a fewz j as
functions ofj are shown in the three-dimensional case
j 50, 2, 4, and 6~from below to above!. It is easy to verify
that the increasing of scaling exponents withj actually holds
for all values ofj andd.

The expression forz j allows us to make some conjectur
on the role played by anisotropic effects on the emergenc
the dynamo effect. It is known@9,13# that in the isotropic
case an unbounded growth of the magnetic field~dynamo

FIG. 1. Behavior ofz j vs j for d53 and~from below to above!
j 50, j 52, 4, and 6.
d

v.

,

r

of

effect! arises for j.1. The question addressed here
whether anisotropic component can contribute to destab
the system, shifting toward smaller values ofj the threshold
for the dynamo. We note that, in the isotropic case, dyna
arises when the exponent related to the admissible zero m
becomes complex. In this case, zero-mode solutions h
sinusoidal components, a fact that makes possible t
matching with the appropriate boundary conditions also
the absence of forcing~i.e., the system is self-maintained!.
This happens forj.1, j51 being the threshold. Taking
such condition as a criterion to select the emergence o
unbounded growth, we can conclude that there is no ef
played by the anisotropic components. Indeed, it is ea
verified from Eq. ~28! that, for all d’s, z j is real for j
P@0,1#.

In conclusion, we have presented a system where the
traction of anisotropic contributions to the anomalous scal
of the equal-time magnetic correlation functions can be p
formed in a nonperturbative way. We have calculated
entire set of universal anomalous exponents,z j , and we have
given an analytic assessment of the dominance of the fun
mental exponent associated with the isotropic shell. M
generally, the hierarchyz0,z2,•••z j,••• has been
proved. The picture here drawn is in agreement with rec
findings by Antonov@2#, where the passive scalar problem
studied, and by Aradet al. @6# for Navier–Stokes turbulence
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